readability code clean-up (#550)

* readability code clean-up

* readability code clean-up
This commit is contained in:
Logan oos Even 2020-12-19 17:14:15 +05:45 committed by GitHub
parent de92fab878
commit 71065278fa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 76 additions and 77 deletions

View File

@ -18,15 +18,13 @@
uint32_t packet_header_decrypt (uint8_t packet[], uint16_t packet_len,
char * community_name, he_context_t * ctx,
he_context_t * ctx_iv,
uint64_t * stamp, uint16_t * checksum);
char *community_name, he_context_t *ctx,
he_context_t *ctx_iv,
uint64_t *stamp, uint16_t *checksum);
int32_t packet_header_encrypt (uint8_t packet[], uint8_t header_len, he_context_t * ctx,
he_context_t * ctx_iv,
int32_t packet_header_encrypt (uint8_t packet[], uint8_t header_len, he_context_t *ctx,
he_context_t *ctx_iv,
uint64_t stamp, uint16_t checksum);
void packet_header_setup_key (const char * community_name, he_context_t ** ctx,
he_context_t ** ctx_iv);
void packet_header_setup_key (const char *community_name, he_context_t **ctx,
he_context_t **ctx_iv);

View File

@ -19,97 +19,98 @@
#include "n2n.h"
#define HASH_FIND_COMMUNITY(head, name, out) HASH_FIND_STR(head, name, out)
/* ********************************************************************** */
uint32_t packet_header_decrypt (uint8_t packet[], uint16_t packet_len,
char * community_name, he_context_t * ctx,
he_context_t * ctx_iv, uint64_t * stamp, uint16_t * checksum) {
char *community_name, he_context_t *ctx,
he_context_t *ctx_iv, uint64_t *stamp, uint16_t *checksum) {
// assemble IV
// the last four are ASCII "n2n!" and do not get overwritten
uint8_t iv[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x6E, 0x32, 0x6E, 0x21 };
// the first 96 bits of the packet get padded with ASCII "n2n!"
// to full 128 bit IV
memcpy (iv, packet, 12);
// assemble IV
// the last four are ASCII "n2n!" and do not get overwritten
uint8_t iv[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x6E, 0x32, 0x6E, 0x21 };
// the first 96 bits of the packet get padded with ASCII "n2n!"
// to full 128 bit IV
memcpy(iv, packet, 12);
// try community name as possible key and check for magic bytes
uint32_t magic = 0x6E326E00; // ="n2n_"
uint32_t test_magic;
// check for magic bytes and reasonable value in header len field
// so, as a first step, decrypt 4 bytes only starting at byte 12
speck_he((uint8_t*)&test_magic, &packet[12], 4, iv, (speck_context_t*)ctx);
test_magic = be32toh(test_magic);
if((((test_magic >> 8) << 8) == magic) /* check the thre uppermost bytes */
&& (((uint8_t)test_magic) <= packet_len)) { /* lowest 8 bit of test_magic are header_len */
// decrypt the complete header
speck_he(&packet[12], &packet[12], (uint8_t)(test_magic) - 12, iv, (speck_context_t*)ctx);
// try community name as possible key and check for magic bytes
uint32_t magic = 0x6E326E00; // ="n2n_"
uint32_t test_magic;
// check for magic bytes and reasonable value in header len field
// so, as a first step, decrypt 4 bytes only starting at byte 12
speck_he ((uint8_t*)&test_magic, &packet[12], 4, iv, (speck_context_t*)ctx);
test_magic = be32toh (test_magic);
if( (((test_magic >> 8) << 8) == magic) // check the thre uppermost bytes
&& (((uint8_t)test_magic) <= packet_len) // lowest 8 bit of test_magic are header_len
) {
// decrypt the complete header
speck_he (&packet[12], &packet[12], (uint8_t)(test_magic) - 12, iv, (speck_context_t*)ctx);
// extract time stamp (first 64 bit) and checksum (last 16 bit) blended in IV
speck_he_iv_decrypt(iv, (speck_context_t*)ctx_iv);
*checksum = be16toh(((uint16_t*)iv)[5]);
*stamp = be64toh(((uint64_t*)iv)[0]);
// extract time stamp (first 64 bit) and checksum (last 16 bit) blended in IV
speck_he_iv_decrypt (iv, (speck_context_t*)ctx_iv);
*checksum = be16toh (((uint16_t*)iv)[5]);
*stamp = be64toh (((uint64_t*)iv)[0]);
// restore original packet order
memcpy(&packet[0], &packet[16], 4);
memcpy(&packet[4], community_name, N2N_COMMUNITY_SIZE);
// restore original packet order
memcpy (&packet[0], &packet[16], 4);
memcpy (&packet[4], community_name, N2N_COMMUNITY_SIZE);
// successful
return 1;
} else {
return (1); // successful
} else {
return (0); // unsuccessful
}
// unsuccessful
return 0;
}
}
/* ********************************************************************** */
int32_t packet_header_encrypt (uint8_t packet[], uint8_t header_len, he_context_t * ctx,
he_context_t * ctx_iv, uint64_t stamp, uint16_t checksum) {
int32_t packet_header_encrypt (uint8_t packet[], uint8_t header_len, he_context_t *ctx,
he_context_t *ctx_iv, uint64_t stamp, uint16_t checksum) {
uint8_t iv[16];
uint16_t *iv16 = (uint16_t*)&iv;
uint32_t *iv32 = (uint32_t*)&iv;
uint64_t *iv64 = (uint64_t*)&iv;
const uint32_t magic = 0x6E326E21; // = ASCII "n2n!"
uint8_t iv[16];
uint16_t *iv16 = (uint16_t*)&iv;
uint32_t *iv32 = (uint32_t*)&iv;
uint64_t *iv64 = (uint64_t*)&iv;
const uint32_t magic = 0x6E326E21; /* == ASCII "n2n!" */
if(header_len < 20) {
traceEvent(TRACE_DEBUG, "packet_header_encrypt dropped a packet too short to be valid.");
return (-1);
}
if(header_len < 20) {
traceEvent(TRACE_DEBUG, "packet_header_encrypt dropped a packet too short to be valid.");
return -1;
}
memcpy (&packet[16], &packet[00], 4);
memcpy(&packet[16], &packet[00], 4);
iv64[0] = htobe64 (stamp);
iv16[4] = n2n_rand ();
iv16[5] = htobe16 (checksum);
iv32[3] = htobe32 (magic);
// blend checksum into 96-bit IV
speck_he_iv_encrypt (iv, (speck_context_t*)ctx_iv);
iv64[0] = htobe64(stamp);
iv16[4] = n2n_rand();
iv16[5] = htobe16(checksum);
iv32[3] = htobe32(magic);
memcpy (packet, iv, 16);
packet[15] = header_len;
// blend checksum into 96-bit IV
speck_he_iv_encrypt(iv, (speck_context_t*)ctx_iv);
speck_he (&packet[12], &packet[12], header_len - 12, iv, (speck_context_t*)ctx);
return (0);
memcpy(packet, iv, 16);
packet[15] = header_len;
speck_he(&packet[12], &packet[12], header_len - 12, iv, (speck_context_t*)ctx);
return 0;
}
/* ********************************************************************** */
void packet_header_setup_key (const char * community_name, he_context_t ** ctx,
he_context_t ** ctx_iv) {
void packet_header_setup_key (const char *community_name, he_context_t **ctx,
he_context_t **ctx_iv) {
uint8_t key[16];
pearson_hash_128 (key, (uint8_t*)community_name, N2N_COMMUNITY_SIZE);
uint8_t key[16];
pearson_hash_128(key, (uint8_t*)community_name, N2N_COMMUNITY_SIZE);
*ctx = (he_context_t*)calloc(1, sizeof (speck_context_t));
speck_expand_key_he (key, (speck_context_t*)*ctx);
*ctx = (he_context_t*)calloc(1, sizeof (speck_context_t));
speck_expand_key_he(key, (speck_context_t*)*ctx);
// hash again and use last 96 bit (skipping 4 bytes) as key for IV encryption
// REMOVE as soon as checksum and replay protection get their own fields
pearson_hash_128 (key, key, sizeof (key));
*ctx_iv = (he_context_t*)calloc(1, sizeof (speck_context_t));
speck_expand_key_he_iv (&key[4], (speck_context_t*)*ctx_iv);
// hash again and use last 96 bit (skipping 4 bytes) as key for IV encryption
// REMOVE as soon as checksum and replay protection get their own fields
pearson_hash_128(key, key, sizeof (key));
*ctx_iv = (he_context_t*)calloc(1, sizeof (speck_context_t));
speck_expand_key_he_iv(&key[4], (speck_context_t*)*ctx_iv);
}