/** * (C) 2007-22 - ntop.org and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not see see * */ // cipher SPECK -- 128 bit block size -- 128 and 256 bit key size -- CTR mode // taken from (and modified: removed pure crypto-stream generation and seperated key expansion) // https://github.com/nsacyber/simon-speck-supercop/blob/master/crypto_stream/speck128256ctr/ #include "speck.h" #include "portable_endian.h" // for htole64, le64toh #include // for size_t, malloc, free #if defined (SPECK_ALIGNED_CTX) #include // for _mm_free, _mm_malloc #endif #if defined (__AVX512F__) // AVX512 support ---------------------------------------------------------------------- #define LCS(x,r) (((x)<>(64-r))) #define RCS(x,r) (((x)>>r)|((x)<<(64-r))) #define SET _mm512_set_epi64 #define XOR _mm512_xor_si512 #define ADD _mm512_add_epi64 #define AND _mm512_and_si512 #define ROL(X,r) (_mm512_rol_epi64(X,r)) #define ROR(X,r) (_mm512_ror_epi64(X,r)) #define _q8 SET(0x7LL,0x3LL,0x6LL,0x2LL,0x5LL,0x1LL,0x4LL,0x0LL) #define _eight SET(0x8LL,0x8LL,0x8LL,0x8LL,0x8LL,0x8LL,0x8LL,0x8LL) #define SET1(X,c) (X=SET(c,c,c,c,c,c,c,c)) #define SET8(X,c) (X=SET(c,c,c,c,c,c,c,c), X=ADD(X,_q8)) #define LOW _mm512_unpacklo_epi64 #define HIGH _mm512_unpackhi_epi64 #define LD(ip) (_mm512_load_epi64(((void *)(ip)))) #define ST(ip,X) _mm512_storeu_si512((void *)(ip),X) #define STORE(out,X,Y) (ST(out,LOW(Y,X)), ST(out+64,HIGH(Y,X))) #define XOR_STORE(in,out,X,Y) (ST(out,XOR(LD(in),LOW(Y,X))), ST(out+64,XOR(LD(in+64),HIGH(Y,X)))) #define Rx8(X,Y,k) (X[0]=XOR(ADD(ROR(X[0],8),Y[0]),k), \ Y[0]=XOR(ROL(Y[0],3),X[0])) #define Rx16(X,Y,k) (X[0]=XOR(ADD(ROR(X[0],8),Y[0]),k), X[1]=XOR(ADD(ROR(X[1],8),Y[1]),k), \ Y[0]=XOR(ROL(Y[0],3),X[0]), Y[1]=XOR(ROL(Y[1],3),X[1])) #define Rx24(X,Y,k) (X[0]=XOR(ADD(ROR(X[0],8),Y[0]),k), X[1]=XOR(ADD(ROR(X[1],8),Y[1]),k), X[2]=XOR(ADD(ROR(X[2],8),Y[2]),k), \ Y[0]=XOR(ROL(Y[0],3),X[0]), Y[1]=XOR(ROL(Y[1],3),X[1]), Y[2]=XOR(ROL(Y[2],3),X[2])) #define Rx32(X,Y,k) (X[0]=XOR(ADD(ROR(X[0],8),Y[0]),k), X[1]=XOR(ADD(ROR(X[1],8),Y[1]),k), \ X[2]=XOR(ADD(ROR(X[2],8),Y[2]),k), X[3]=XOR(ADD(ROR(X[3],8),Y[3]),k), \ Y[0]=XOR(ROL(Y[0],3),X[0]), Y[1]=XOR(ROL(Y[1],3),X[1]), \ Y[2]=XOR(ROL(Y[2],3),X[2]), Y[3]=XOR(ROL(Y[3],3),X[3])) #define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0]) #define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x) #define Rx2(x,y,k) (x[0]=RCS(x[0],8), x[1]=RCS(x[1],8), x[0]+=y[0], x[1]+=y[1], \ x[0]^=k, x[1]^=k, y[0]=LCS(y[0],3), y[1]=LCS(y[1],3), y[0]^=x[0], y[1]^=x[1]) #define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \ Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \ Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \ Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31])) #define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \ Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33])) #define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X) #define EK(A,B,C,D,k,key) (RK(B,A,k,key,0), RK(C,A,k,key,1), RK(D,A,k,key,2), RK(B,A,k,key,3), RK(C,A,k,key,4), RK(D,A,k,key,5), RK(B,A,k,key,6), \ RK(C,A,k,key,7), RK(D,A,k,key,8), RK(B,A,k,key,9), RK(C,A,k,key,10), RK(D,A,k,key,11), RK(B,A,k,key,12), RK(C,A,k,key,13), \ RK(D,A,k,key,14), RK(B,A,k,key,15), RK(C,A,k,key,16), RK(D,A,k,key,17), RK(B,A,k,key,18), RK(C,A,k,key,19), RK(D,A,k,key,20), \ RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \ RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33)) #define Encrypt_Dispatcher(keysize) \ u64 x[2], y[2]; \ u512 X[4], Y[4]; \ unsigned char block1024[128]; \ \ if(numbytes == 16) { \ x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \ Encrypt_##keysize(x, y, ctx->key, 1); \ ((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \ return 0; \ } \ \ if(numbytes == 32) { \ x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \ x[1] = nonce[1]; y[1] = nonce[0]; nonce[0]++; \ Encrypt_##keysize(x, y, ctx->key, 2); \ ((u64 *)out)[1] = x[0] ^ ((u64 *)in)[1]; ((u64 *)out)[0] = y[0] ^ ((u64 *)in)[0]; \ ((u64 *)out)[3] = x[1] ^ ((u64 *)in)[3]; ((u64 *)out)[2] = y[1] ^ ((u64 *)in)[2]; \ return 0; \ } \ \ if(numbytes == 64) { \ SET1(X[0], nonce[1]); \ SET8(Y[0], nonce[0]); \ Encrypt_##keysize(X, Y, ctx->rk, 8); \ nonce[0] += (numbytes >> 4); \ memcpy(block1024, in, 64); \ XOR_STORE(block1024, block1024, X[0], Y[0]); \ memcpy(out, block1024, 64); \ return 0; \ } \ \ SET1(X[0], nonce[1]); SET8(Y[0], nonce[0]); \ \ if(numbytes == 128) \ Encrypt_##keysize(X, Y, ctx->rk, 8); \ else { \ X[1] = X[0]; \ Y[1] = ADD(Y[0], _eight); \ if(numbytes == 256) \ Encrypt_##keysize(X, Y, ctx->rk, 16); \ else { \ X[2] = X[0]; \ Y[2] = ADD(Y[1], _eight); \ if(numbytes == 384) \ Encrypt_##keysize(X, Y, ctx->rk, 24); \ else { \ X[3] = X[0]; \ Y[3] = ADD(Y[2], _eight); \ Encrypt_##keysize(X, Y, ctx->rk, 32); \ } \ } \ } \ \ nonce[0] += (numbytes >> 4); \ \ XOR_STORE(in, out, X[0], Y[0]); \ if (numbytes >= 256) \ XOR_STORE(in + 128, out + 128, X[1], Y[1]); \ if(numbytes >= 384) \ XOR_STORE(in + 256, out + 256, X[2], Y[2]); \ if(numbytes >= 512) \ XOR_STORE(in + 384, out + 384, X[3], Y[3]); \ \ return 0 static int speck_encrypt_xor(unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) { if(ctx->keysize == 256) { Encrypt_Dispatcher(256); } else { Encrypt_Dispatcher(128); } } static int internal_speck_ctr(unsigned char *out, const unsigned char *in, unsigned long long inlen, const unsigned char *n, speck_context_t *ctx) { int i; u64 nonce[2]; unsigned char block[16]; u64 * const block64 = (u64 *)block; if (!inlen) return 0; nonce[0] = ((u64 *)n)[0]; nonce[1] = ((u64 *)n)[1]; while(inlen >= 512) { speck_encrypt_xor(out, in, nonce, ctx, 512); in += 512; inlen -= 512; out += 512; } if(inlen >= 384) { speck_encrypt_xor(out, in, nonce, ctx, 384); in += 384; inlen -= 384; out += 384; } if(inlen >= 256) { speck_encrypt_xor(out, in, nonce, ctx, 256); in += 256; inlen -= 256; out += 256; } if(inlen >= 128) { speck_encrypt_xor(out, in, nonce, ctx, 128); in += 128; inlen -= 128; out += 128; } if(inlen >= 64) { speck_encrypt_xor(out, in, nonce, ctx, 64); in += 64; inlen -= 64; out += 64; } if(inlen >= 32) { speck_encrypt_xor(out, in, nonce, ctx, 32); in += 32; inlen -= 32; out += 32; } if(inlen >= 16) { speck_encrypt_xor(block, in, nonce, ctx, 16); ((u64 *)out)[0] = block64[0] ^ ((u64 *)in)[0]; ((u64 *)out)[1] = block64[1] ^ ((u64 *)in)[1]; in += 16; inlen -= 16; out += 16; } if(inlen > 0) { speck_encrypt_xor(block, in, nonce, ctx, 16); for(i = 0; i < inlen; i++) out[i] = block[i] ^ in[i]; } return 0; } static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) { u64 K[4]; size_t i; for(i = 0; i < (keysize >> 6); i++) K[i] = ((u64 *)k)[i]; // 128 bit has only two keys A and B thus replacing both C and D with B then if(keysize == 128) { EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key); } else { EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key); } ctx->keysize = keysize; return 0; } #elif defined (__AVX2__) // AVX2 support ------------------------------------------------------------------------- #define LCS(x,r) (((x)<>(64-r))) #define RCS(x,r) (((x)>>r)|((x)<<(64-r))) #define XOR _mm256_xor_si256 #define AND _mm256_and_si256 #define ADD _mm256_add_epi64 #define SL _mm256_slli_epi64 #define SR _mm256_srli_epi64 #define _q SET(0x3,0x1,0x2,0x0) #define _four SET(0x4,0x4,0x4,0x4) #define SET _mm256_set_epi64x #define SET1(X,c) (X=SET(c,c,c,c)) #define SET4(X,c) (X=SET(c,c,c,c), X=ADD(X,_q)) #define LOW _mm256_unpacklo_epi64 #define HIGH _mm256_unpackhi_epi64 #define LD(ip) _mm256_loadu_si256((__m256i *)(ip)) #define ST(ip,X) _mm256_storeu_si256((__m256i *)(ip),X) #define STORE(out,X,Y) (ST(out,LOW(Y,X)), ST(out+32,HIGH(Y,X))) #define STORE_ALT(out,X,Y) (ST(out,LOW(X,Y)), ST(out+32,HIGH(X,Y))) #define XOR_STORE(in,out,X,Y) (ST(out,XOR(LD(in),LOW(Y,X))), ST(out+32,XOR(LD(in+32),HIGH(Y,X)))) #define XOR_STORE_ALT(in,out,X,Y) (ST(out,XOR(LD(in),LOW(X,Y))), ST(out+32,XOR(LD(in+32),HIGH(X,Y)))) #define SHFL _mm256_shuffle_epi8 #define R8 SET(0x080f0e0d0c0b0a09LL,0x0007060504030201LL,0x080f0e0d0c0b0a09LL,0x0007060504030201LL) #define L8 SET(0x0e0d0c0b0a09080fLL,0x0605040302010007LL,0x0e0d0c0b0a09080fLL,0x0605040302010007LL) #define ROL8(X) (SHFL(X,L8)) #define ROR8(X) (SHFL(X,R8)) #define ROL(X,r) (XOR(SL(X,r),SR(X,(64-r)))) #define ROR(X,r) (XOR(SR(X,r),SL(X,(64-r)))) #define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X)) #define Rx4(X,Y,k) (R(X[0],Y[0],k)) #define Rx8(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k)) #define Rx12(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k)) #define Rx16(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), \ X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), \ X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k), \ Z[0]=Y[0], Z[1]=Y[1], Z[2]=Y[2], Z[3]=Y[3], \ Z[0]=SL(Z[0],3), Y[0]=SR(Y[0],61), Z[1]=SL(Z[1],3), Y[1]=SR(Y[1],61), \ Z[2]=SL(Z[2],3), Y[2]=SR(Y[2],61), Z[3]=SL(Z[3],3), Y[3]=SR(Y[3],61), \ Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]), Y[3]=XOR(Y[3],Z[3]), \ Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3])) #define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0]) #define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x) #define Rx2(x,y,k) (x[0]=RCS(x[0],8), x[1]=RCS(x[1],8), x[0]+=y[0], x[1]+=y[1], \ x[0]^=k, x[1]^=k, y[0]=LCS(y[0],3), y[1]=LCS(y[1],3), y[0]^=x[0], y[1]^=x[1]) #define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \ Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \ Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \ Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31])) #define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \ Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33])) #define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X) #define EK(A,B,C,D,k,key) (RK(B,A,k,key,0), RK(C,A,k,key,1), RK(D,A,k,key,2), RK(B,A,k,key,3), RK(C,A,k,key,4), RK(D,A,k,key,5), RK(B,A,k,key,6), \ RK(C,A,k,key,7), RK(D,A,k,key,8), RK(B,A,k,key,9), RK(C,A,k,key,10), RK(D,A,k,key,11), RK(B,A,k,key,12), RK(C,A,k,key,13), \ RK(D,A,k,key,14), RK(B,A,k,key,15), RK(C,A,k,key,16), RK(D,A,k,key,17), RK(B,A,k,key,18), RK(C,A,k,key,19), RK(D,A,k,key,20), \ RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \ RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33)) #define Encrypt_Dispatcher(keysize) \ u64 x[2], y[2]; \ u256 X[4], Y[4], Z[4]; \ \ if(numbytes == 16) { \ x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \ Encrypt_##keysize(x, y, ctx->key, 1); \ ((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \ return 0; \ } \ \ if(numbytes == 32) { \ x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \ x[1] = nonce[1]; y[1] = nonce[0]; nonce[0]++; \ Encrypt_##keysize(x , y, ctx->key, 2); \ ((u64 *)out)[1] = x[0] ^ ((u64 *)in)[1]; ((u64 *)out)[0] = y[0] ^ ((u64 *)in)[0]; \ ((u64 *)out)[3] = x[1] ^ ((u64 *)in)[3]; ((u64 *)out)[2] = y[1] ^ ((u64 *)in)[2]; \ return 0; \ } \ \ SET1(X[0], nonce[1]); SET4(Y[0], nonce[0]); \ \ if(numbytes == 64) \ Encrypt_##keysize(X, Y, ctx->rk, 4); \ else { \ X[1] = X[0]; \ Y[1] = ADD(Y[0], _four); \ if(numbytes == 128) \ Encrypt_##keysize(X, Y, ctx->rk, 8); \ else { \ X[2] = X[0]; \ Y[2] = ADD(Y[1], _four); \ if(numbytes == 192) \ Encrypt_##keysize(X, Y, ctx->rk, 12); \ else { \ X[3] = X[0]; \ Y[3] = ADD(Y[2], _four); \ Encrypt_##keysize(X, Y, ctx->rk, 16); \ } \ } \ } \ \ nonce[0] += (numbytes >> 4); \ \ XOR_STORE(in, out, X[0], Y[0]); \ if (numbytes >= 128) \ XOR_STORE(in + 64, out + 64, X[1], Y[1]); \ if(numbytes >= 192) \ XOR_STORE(in + 128, out + 128, X[2], Y[2]); \ if(numbytes >= 256) \ XOR_STORE(in + 192, out + 192, X[3], Y[3]); \ \ return 0 static int speck_encrypt_xor(unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) { if(ctx->keysize == 256) { Encrypt_Dispatcher(256); } else { Encrypt_Dispatcher(128); } } static int internal_speck_ctr(unsigned char *out, const unsigned char *in, unsigned long long inlen, const unsigned char *n, speck_context_t *ctx) { int i; u64 nonce[2]; unsigned char block[16]; u64 * const block64 = (u64 *)block; if (!inlen) return 0; nonce[0] = ((u64 *)n)[0]; nonce[1] = ((u64 *)n)[1]; while(inlen >= 256) { speck_encrypt_xor(out, in, nonce, ctx, 256); in += 256; inlen -= 256; out += 256; } if(inlen >= 192) { speck_encrypt_xor(out, in, nonce, ctx, 192); in += 192; inlen -= 192; out += 192; } if(inlen >= 128) { speck_encrypt_xor(out, in, nonce, ctx, 128); in += 128; inlen -= 128; out += 128; } if(inlen >= 64) { speck_encrypt_xor(out, in, nonce, ctx, 64); in += 64; inlen -= 64; out += 64; } if(inlen >= 32) { speck_encrypt_xor(out, in, nonce, ctx, 32); in += 32; inlen -= 32; out += 32; } if(inlen >= 16) { speck_encrypt_xor(block, in, nonce, ctx, 16); ((u64 *)out)[0] = block64[0] ^ ((u64 *)in)[0]; ((u64 *)out)[1] = block64[1] ^ ((u64 *)in)[1]; in += 16; inlen -= 16; out += 16; } if(inlen > 0) { speck_encrypt_xor(block, in, nonce, ctx, 16); for(i = 0; i < inlen; i++) out[i] = block[i] ^ in[i]; } return 0; } static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) { u64 K[4]; size_t i; for(i = 0; i < (keysize >> 6); i++) K[i] = ((u64 *)k)[i]; // 128 bit has only two keys A and B thus replacing both C and D with B then if(keysize == 128) { EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key); } else { EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key); } ctx->keysize = keysize; return 0; } #elif defined (__SSE2__) // SSE support --------------------------------------------------------------------------- #define LCS(x,r) (((x)<>(64-r))) #define RCS(x,r) (((x)>>r)|((x)<<(64-r))) #define XOR _mm_xor_si128 #define AND _mm_and_si128 #define ADD _mm_add_epi64 #define SL _mm_slli_epi64 #define SR _mm_srli_epi64 #define _q SET(0x1,0x0) #define _two SET(0x2,0x2) #define SET _mm_set_epi64x #define SET1(X,c) (X=SET(c,c)) #define SET2(X,c) (X=SET(c,c), X=ADD(X,_q)) #define LOW _mm_unpacklo_epi64 #define HIGH _mm_unpackhi_epi64 #define LD(ip) _mm_loadu_si128((__m128i *)(ip)) #define ST(ip,X) _mm_storeu_si128((__m128i *)(ip),X) #define STORE(out,X,Y) (ST(out,LOW(Y,X)), ST(out+16,HIGH(Y,X))) #define STORE_ALT(out,X,Y) (ST(out,LOW(X,Y)), ST(out+16,HIGH(X,Y))) #define XOR_STORE(in,out,X,Y) (ST(out,XOR(LD(in),LOW(Y,X))), ST(out+16,XOR(LD(in+16),HIGH(Y,X)))) #define XOR_STORE_ALT(in,out,X,Y) (ST(out,XOR(LD(in),LOW(X,Y))), ST(out+16,XOR(LD(in+16),HIGH(X,Y)))) #define ROL(X,r) (XOR(SL(X,r),SR(X,(64-r)))) #define ROR(X,r) (XOR(SR(X,r),SL(X,(64-r)))) #if defined (__SSSE3__) // even SSSE3 ------------------------------- #define SHFL _mm_shuffle_epi8 #define R8 _mm_set_epi64x(0x080f0e0d0c0b0a09LL,0x0007060504030201LL) #define L8 _mm_set_epi64x(0x0e0d0c0b0a09080fLL,0x0605040302010007LL) #define ROL8(X) (SHFL(X,L8)) #define ROR8(X) (SHFL(X,R8)) #else // regular SSE2 ------------------------------------------------ #define ROL8(X) (ROL(X,8)) #define ROR8(X) (ROR(X,8)) #endif // SSS3 vs. SSE2 ---------------------------------------------- #define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X)) #define Rx2(X,Y,k) (R(X[0],Y[0],k)) #define Rx4(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k)) #define Rx6(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k)) #define Rx8(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), \ X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), \ X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k), \ Z[0]=Y[0], Z[1]=Y[1], Z[2]=Y[2], Z[3]=Y[3], \ Z[0]=SL(Z[0],3), Y[0]=SR(Y[0],61), Z[1]=SL(Z[1],3), Y[1]=SR(Y[1],61), \ Z[2]=SL(Z[2],3), Y[2]=SR(Y[2],61), Z[3]=SL(Z[3],3), Y[3]=SR(Y[3],61), \ Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]), Y[3]=XOR(Y[3],Z[3]), \ Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3])) #define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0]) #define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x) #define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \ Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \ Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \ Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31])) #define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \ Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33])) #define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X) #define EK(A,B,C,D,k,key) (RK(B,A,k,key,0), RK(C,A,k,key,1), RK(D,A,k,key,2), RK(B,A,k,key,3), RK(C,A,k,key,4), RK(D,A,k,key,5), RK(B,A,k,key,6), \ RK(C,A,k,key,7), RK(D,A,k,key,8), RK(B,A,k,key,9), RK(C,A,k,key,10), RK(D,A,k,key,11), RK(B,A,k,key,12), RK(C,A,k,key,13), \ RK(D,A,k,key,14), RK(B,A,k,key,15), RK(C,A,k,key,16), RK(D,A,k,key,17), RK(B,A,k,key,18), RK(C,A,k,key,19), RK(D,A,k,key,20), \ RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \ RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33)) #define Encrypt_Dispatcher(keysize) \ u64 x[2], y[2]; \ u128 X[4], Y[4], Z[4]; \ \ if(numbytes == 16) { \ x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \ Encrypt_##keysize(x, y, ctx.key, 1); \ ((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \ return 0; \ } \ \ SET1(X[0], nonce[1]); SET2(Y[0], nonce[0]); \ \ if(numbytes == 32) \ Encrypt_##keysize(X, Y, ctx.rk, 2); \ else { \ X[1] = X[0]; Y[1] = ADD(Y[0], _two); \ if(numbytes == 64) \ Encrypt_##keysize(X, Y, ctx.rk, 4); \ else { \ X[2] = X[0]; Y[2] = ADD(Y[1], _two); \ if(numbytes == 96) \ Encrypt_##keysize(X, Y, ctx.rk, 6); \ else { \ X[3] = X[0]; Y[3] = ADD(Y[2], _two); \ Encrypt_##keysize(X, Y, ctx.rk, 8); \ } \ } \ } \ \ nonce[0] += (numbytes >> 4); \ \ XOR_STORE(in, out, X[0], Y[0]); \ if(numbytes >= 64) \ XOR_STORE(in + 32, out + 32, X[1], Y[1]); \ if(numbytes >= 96) \ XOR_STORE(in + 64, out + 64, X[2], Y[2]); \ if(numbytes >= 128) \ XOR_STORE(in + 96, out + 96, X[3], Y[3]); \ \ return 0 // attention: ctx is provided by value as it is faster in this case, astonishingly static int speck_encrypt_xor (unsigned char *out, const unsigned char *in, u64 nonce[], const speck_context_t ctx, int numbytes) { if(ctx.keysize == 256) { Encrypt_Dispatcher(256); } else { Encrypt_Dispatcher(128); } } // attention: ctx is provided by value as it is faster in this case, astonishingly static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen, const unsigned char *n, const speck_context_t ctx) { int i; u64 nonce[2]; unsigned char block[16]; u64 * const block64 = (u64 *)block; if(!inlen) return 0; nonce[0] = ((u64 *)n)[0]; nonce[1] = ((u64 *)n)[1]; while(inlen >= 128) { speck_encrypt_xor(out, in, nonce, ctx, 128); in += 128; inlen -= 128; out += 128; } if(inlen >= 96) { speck_encrypt_xor(out, in, nonce, ctx, 96); in += 96; inlen -= 96; out += 96; } if(inlen >= 64) { speck_encrypt_xor(out, in, nonce, ctx, 64); in += 64; inlen -= 64; out += 64; } if(inlen >= 32) { speck_encrypt_xor(out, in, nonce, ctx, 32); in += 32; inlen -= 32; out += 32; } if(inlen >= 16) { speck_encrypt_xor(block, in, nonce, ctx, 16); ((u64 *)out)[0] = block64[0] ^ ((u64 *)in)[0]; ((u64 *)out)[1] = block64[1] ^ ((u64 *)in)[1]; in += 16; inlen -= 16; out += 16; } if(inlen > 0) { speck_encrypt_xor (block, in, nonce, ctx, 16); for(i = 0; i < inlen; i++) out[i] = block[i] ^ in[i]; } return 0; } static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) { u64 K[4]; size_t i; for(i = 0; i < (keysize >> 6 ); i++) K[i] = ((u64 *)k)[i]; // 128 bit has only two keys A and B thus replacing both C and D with B then if(keysize == 128) { EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key); } else { EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key); } ctx->keysize = keysize; return 0; } #elif defined (__ARM_NEON) && defined (SPECK_ARM_NEON) // NEON support --------------------------------------- #define LCS(x,r) (((x)<>(64-r))) #define RCS(x,r) (((x)>>r)|((x)<<(64-r))) #define XOR veorq_u64 #define AND vandq_u64 #define ADD vaddq_u64 #define SL vshlq_n_u64 #define SR vshrq_n_u64 #define SET(a,b) vcombine_u64((uint64x1_t)(a),(uint64x1_t)(b)) #define SET1(X,c) (X=SET(c,c)) #define SET2(X,c) (SET1(X,c), X=ADD(X,SET(0x1ll,0x0ll)),c+=2) #define LOW(Z) vgetq_lane_u64(Z,0) #define HIGH(Z) vgetq_lane_u64(Z,1) #define STORE(ip,X,Y) (((u64 *)(ip))[0]=HIGH(Y), ((u64 *)(ip))[1]=HIGH(X), ((u64 *)(ip))[2]=LOW(Y), ((u64 *)(ip))[3]=LOW(X)) #define XOR_STORE(in,out,X,Y) (Y=XOR(Y,SET(((u64 *)(in))[2],((u64 *)(in))[0])), X=XOR(X,SET(((u64 *)(in))[3],((u64 *)(in))[1])), STORE(out,X,Y)) #define ROR(X,r) vsriq_n_u64(SL(X,(64-r)),X,r) #define ROL(X,r) ROR(X,(64-r)) #define tableR vcreate_u8(0x0007060504030201LL) #define tableL vcreate_u8(0x0605040302010007LL) #define ROR8(X) SET(vtbl1_u8((uint8x8_t)vget_low_u64(X),tableR), vtbl1_u8((uint8x8_t)vget_high_u64(X),tableR)) #define ROL8(X) SET(vtbl1_u8((uint8x8_t)vget_low_u64(X),tableL), vtbl1_u8((uint8x8_t)vget_high_u64(X),tableL)) #define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X)) #define Rx2(X,Y,k) (R(X[0],Y[0],k)) #define Rx4(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k)) #define Rx6(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k)) #define Rx8(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[0]=XOR(X[0],k), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), X[1]=XOR(X[1],k), \ X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[2]=XOR(X[2],k), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), X[3]=XOR(X[3],k), \ Z[0]=SL(Y[0],3), Z[1]=SL(Y[1],3), Z[2]=SL(Y[2],3), Z[3]=SL(Y[3],3), \ Y[0]=SR(Y[0],61), Y[1]=SR(Y[1],61), Y[2]=SR(Y[2],61), Y[3]=SR(Y[3],61), \ Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]), Y[3]=XOR(Y[3],Z[3]), \ Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3])) #define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0]) #define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x) #define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \ Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \ Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \ Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31])) #define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \ Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33])) #define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X) #define EK(A,B,C,D,k,key) (RK(B,A,k,key,0), RK(C,A,k,key,1), RK(D,A,k,key,2), RK(B,A,k,key,3), RK(C,A,k,key,4), RK(D,A,k,key,5), RK(B,A,k,key,6), \ RK(C,A,k,key,7), RK(D,A,k,key,8), RK(B,A,k,key,9), RK(C,A,k,key,10), RK(D,A,k,key,11), RK(B,A,k,key,12), RK(C,A,k,key,13), \ RK(D,A,k,key,14), RK(B,A,k,key,15), RK(C,A,k,key,16), RK(D,A,k,key,17), RK(B,A,k,key,18), RK(C,A,k,key,19), RK(D,A,k,key,20), \ RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \ RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33)) #define Encrypt_Dispatcher(keysize) \ u64 x[2], y[2]; \ u128 X[4], Y[4], Z[4]; \ \ if(numbytes == 16) { \ x[0] = nonce[1]; y[0]=nonce[0]; nonce[0]++; \ Encrypt_##keysize(x, y, ctx->key, 1); \ ((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \ return 0; \ } \ \ SET1(X[0], nonce[1]); SET2(Y[0], nonce[0]); \ \ if(numbytes == 32) \ Encrypt_##keysize(X, Y, ctx->rk, 2); \ else { \ X[1] = X[0]; SET2(Y[1], nonce[0]); \ if(numbytes == 64) \ Encrypt_##keysize(X, Y, ctx->rk, 4); \ else { \ X[2] = X[0]; SET2(Y[2], nonce[0]); \ if(numbytes == 96) \ Encrypt_##keysize(X, Y, ctx->rk, 6); \ else { \ X[3] = X[0]; SET2(Y[3], nonce[0]); \ Encrypt_##keysize(X, Y, ctx->rk, 8); \ } \ } \ } \ \ XOR_STORE(in, out, X[0], Y[0]); \ if(numbytes >= 64) \ XOR_STORE(in + 32, out + 32, X[1], Y[1]); \ if(numbytes >= 96) \ XOR_STORE(in + 64, out + 64, X[2], Y[2]); \ if(numbytes >= 128) \ XOR_STORE(in + 96, out + 96, X[3], Y[3]); \ \ return 0 static int speck_encrypt_xor (unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) { if(ctx->keysize == 256) { Encrypt_Dispatcher(256); } else { Encrypt_Dispatcher(128); } } static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen, const unsigned char *n, speck_context_t *ctx) { int i; u64 nonce[2]; unsigned char block[16]; u64 *const block64 = (u64 *)block; if(!inlen) return 0; nonce[0] = ((u64 *)n)[0]; nonce[1] = ((u64 *)n)[1]; while(inlen >= 128) { speck_encrypt_xor(out, in, nonce, ctx, 128); in += 128; inlen -= 128; out += 128; } if(inlen >= 96) { speck_encrypt_xor(out, in, nonce, ctx, 96); in += 96; inlen -= 96; out += 96; } if(inlen >= 64) { speck_encrypt_xor(out, in, nonce, ctx, 64); in += 64; inlen -= 64; out += 64; } if(inlen >= 32) { speck_encrypt_xor(out, in, nonce, ctx, 32); in += 32; inlen -= 32; out += 32; } if(inlen >= 16) { speck_encrypt_xor(block, in, nonce, ctx, 16); ((u64 *)out)[0] = block64[0] ^ ((u64 *)in)[0]; ((u64 *)out)[1] = block64[1] ^ ((u64 *)in)[1]; in += 16; inlen -= 16; out += 16; } if(inlen > 0) { speck_encrypt_xor(block, in, nonce, ctx, 16); for(i = 0; i < inlen; i++) out[i] = block[i] ^ in[i]; } return 0; } static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) { u64 K[4]; size_t i; for(i = 0; i < (keysize >> 6); i++) K[i] = ((u64 *)k)[i]; // 128 bit has only two keys A and B thus replacing both C and D with B then if(keysize == 128) { EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key); } else { EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key); } ctx->keysize = keysize; return 0; } #else // plain C ---------------------------------------------------------------------------------------- #define ROR(x,r) (((x)>>(r))|((x)<<(64-(r)))) #define ROL(x,r) (((x)<<(r))|((x)>>(64-(r)))) #define R(x,y,k) (x=ROR(x,8), x+=y, x^=k, y=ROL(y,3), y^=x) static int speck_encrypt (u64 *u, u64 *v, speck_context_t *ctx, int numrounds) { u64 i, x = *u, y = *v; for(i = 0; i < numrounds; i++) R(x, y, ctx->key[i]); *u = x; *v = y; return 0; } static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen, const unsigned char *n, speck_context_t *ctx) { u64 i, nonce[2], x, y, t; unsigned char *block = malloc(16); int numrounds = (ctx->keysize == 256)?34:32; if(!inlen) { free(block); return 0; } nonce[0] = htole64( ((u64*)n)[0] ); nonce[1] = htole64( ((u64*)n)[1] ); t=0; while(inlen >= 16) { x = nonce[1]; y = nonce[0]; nonce[0]++; speck_encrypt(&x, &y, ctx, numrounds); ((u64 *)out)[1+t] = htole64(x ^ ((u64 *)in)[1+t]); ((u64 *)out)[0+t] = htole64(y ^ ((u64 *)in)[0+t]); t += 2; inlen -= 16; } if(inlen > 0) { x = nonce[1]; y = nonce[0]; speck_encrypt(&x, &y, ctx, numrounds); ((u64 *)block)[1] = htole64(x); ((u64 *)block)[0] = htole64(y); for(i = 0; i < inlen; i++) out[i + 8*t] = block[i] ^ in[i + 8*t]; } free(block); return 0; } static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) { u64 K[4]; u64 i; for(i = 0; i < (keysize >> 6); i++) K[i] = htole64( ((u64 *)k)[i] ); for(i = 0; i < 33; i += 3) { ctx->key[i ] = K[0]; R(K[1], K[0], i ); if(keysize == 256) { ctx->key[i+1] = K[0]; R(K[2], K[0], i + 1); ctx->key[i+2] = K[0]; R(K[3], K[0], i + 2); } else { // counter the i += 3 to make the loop go one by one in this case // we can afford the unused 31 and 32 i -= 2; } } ctx->key[33] = K[0]; ctx->keysize = keysize; return 1; } #endif // AVX, SSE, NEON, plain C ------------------------------------------------------------------------ // this functions wraps the call to internal_speck_ctr functions which have slightly different // signature -- ctx by value for SSE with SPECK_CTX_BYVAL defined in speck.h, by name otherwise int speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen, const unsigned char *n, speck_context_t *ctx) { return internal_speck_ctr(out, in, inlen, n, #if defined (SPECK_CTX_BYVAL) *ctx); #else ctx); #endif } // create context loaded with round keys ready for use, key size either 128 or 256 (bits) int speck_init (speck_context_t **ctx, const unsigned char *k, int keysize) { #if defined (SPECK_ALIGNED_CTX) *ctx = (speck_context_t*)_mm_malloc(sizeof(speck_context_t), SPECK_ALIGNED_CTX); #else *ctx = (speck_context_t*)calloc(1, sizeof(speck_context_t)); #endif if(!(*ctx)) { return -1; } return speck_expand_key(*ctx, k, keysize); } int speck_deinit (speck_context_t *ctx) { if(ctx) { #if defined (SPECK_ALIGNED_CTX) _mm_free(ctx); #else free(ctx); #endif } return 0; } // ---------------------------------------------------------------------------------------------------------------- // cipher SPECK -- 128 bit block size -- 128 bit key size -- ECB mode (decrypt only) // follows endianess rules as used in official implementation guide and NOT as in original 2013 cipher presentation // used for IV in header encryption (one block) and challenge encryption (user/password) // for now: just plain C -- probably no need for AVX, SSE, NEON #define ROTL64(x,r) (((x)<<(r))|((x)>>(64-(r)))) #define ROTR64(x,r) (((x)>>(r))|((x)<<(64-(r)))) #define DR128(x,y,k) (y^=x, y=ROTR64(y,3), x^=k, x-=y, x=ROTL64(x,8)) #define ER128(x,y,k) (x=(ROTR64(x,8)+y)^k, y=ROTL64(y,3)^x) int speck_128_decrypt (unsigned char *inout, speck_context_t *ctx) { u64 x, y; int i; x = le64toh( *(u64*)&inout[8] ); y = le64toh( *(u64*)&inout[0] ); for(i = 31; i >= 0; i--) DR128(x, y, ctx->key[i]); ((u64*)inout)[1] = htole64(x); ((u64*)inout)[0] = htole64(y); return 0; } int speck_128_encrypt (unsigned char *inout, speck_context_t *ctx) { u64 x, y; int i; x = le64toh( *(u64*)&inout[8] ); y = le64toh( *(u64*)&inout[0] ); for(i = 0; i < 32; i++) ER128(x, y, ctx->key[i]); ((u64*)inout)[1] = htole64(x); ((u64*)inout)[0] = htole64(y); return 0; }