/** * (C) 2007-21 - ntop.org and contributors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not see see * */ #include "n2n.h" #define HASH_FIND_COMMUNITY(head, name, out) HASH_FIND_STR(head, name, out) int packet_header_decrypt (uint8_t packet[], uint16_t packet_len, char *community_name, he_context_t *ctx, he_context_t *ctx_iv, uint64_t *stamp) { // try community name as possible key and check for magic bytes "n2__" uint32_t magic = 0x6E320000; uint32_t test_magic; uint32_t checksum_high = 0; // check for magic // so, as a first step, decrypt last 4 bytes from where originally the community name would be speck_ctr((uint8_t*)&test_magic, &packet[16], 4, packet, (speck_context_t*)ctx); test_magic = be32toh(test_magic); //extract header length (lower 2 bytes) uint32_t header_len = test_magic - magic; if(header_len <= packet_len) { // decrypt the complete header speck_ctr(&packet[16], &packet[16], header_len - 16, packet, (speck_context_t*)ctx); // extract time stamp and un-xor actual checksum (calculated here) from it // if payload was altered (different checksum than original), time stamp verification will fail // use speck block cipher step (1 block == 128 bit == 16 bytes) speck_128_decrypt(packet, (speck_context_t*)ctx_iv); // extract the required data *stamp = be64toh(*(uint64_t*)&packet[4]); checksum_high = be32toh(*(uint32_t*)packet); // restore original packet order before calculating checksum memcpy(&packet[0], &packet[20], 4); memcpy(&packet[4], community_name, N2N_COMMUNITY_SIZE); uint64_t checksum = pearson_hash_64(packet, packet_len); if((checksum >> 32) != checksum_high) { traceEvent(TRACE_DEBUG, "packet_header_decrypt dropped a packet with invalid checksum."); // unsuccessful return 0; } *stamp = *stamp ^ (checksum << 32); // successful return 1; } else { // unsuccessful return 0; } } int packet_header_encrypt (uint8_t packet[], uint16_t header_len, uint16_t packet_len, he_context_t *ctx, he_context_t *ctx_iv, uint64_t stamp) { uint32_t *p32 = (uint32_t*)packet; uint64_t *p64 = (uint64_t*)packet; uint64_t checksum = 0; uint32_t magic = 0x6E320000; /* == ASCII "n2__" */ magic += header_len; if(packet_len < 24) { traceEvent(TRACE_DEBUG, "packet_header_encrypt dropped a packet too short to be valid."); return -1; } // we trust in the caller assuring header_len <= packet_len checksum = pearson_hash_64(packet, packet_len); // re-order packet p32[5] = p32[0]; // add time stamp, checksum, and random to form the pre-IV p64[0] = htobe64(checksum); p32[1] = p32[1] ^ htobe32((uint32_t)(stamp >> 32)); p32[2] = htobe32((uint32_t)stamp); p32[3] = n2n_rand(); // encrypt this pre-IV to IV speck_128_encrypt(packet, (speck_context_t*)ctx_iv); // place IV plus magic in packet p32[4] = htobe32(magic); // encrypt, starting from magic speck_ctr(&packet[16], &packet[16], header_len - 16, packet, (speck_context_t*)ctx); return 0; } void packet_header_setup_key (const char *community_name, he_context_t **ctx_static, he_context_t **ctx_dynamic, he_context_t **ctx_iv_static, he_context_t **ctx_iv_dynamic) { uint8_t key[16]; // for REGISTER_SUPER, REGISTER_SUPER_ACK, REGISTER_SUPER_NAK only; // for all other packets, same as static by default (changed by user/pw auth scheme // calling packet_header_change_dynamic_key later) pearson_hash_128(key, (uint8_t*)community_name, N2N_COMMUNITY_SIZE); if(!*ctx_static) *ctx_static = (he_context_t*)calloc(1, sizeof(speck_context_t)); speck_init((speck_context_t**)ctx_static, key, 128); if(!*ctx_dynamic) *ctx_dynamic = (he_context_t*)calloc(1, sizeof(speck_context_t)); speck_init((speck_context_t**)ctx_dynamic, key, 128); // hash again and use as key for IV encryption pearson_hash_128(key, key, sizeof(key)); if(!*ctx_iv_static) *ctx_iv_static = (he_context_t*)calloc(1, sizeof(speck_context_t)); speck_init((speck_context_t**)ctx_iv_static, key, 128); if(!*ctx_iv_dynamic) *ctx_iv_dynamic = (he_context_t*)calloc(1, sizeof(speck_context_t)); speck_init((speck_context_t**)ctx_iv_dynamic, key, 128); } void packet_header_change_dynamic_key (uint8_t *key_dynamic, he_context_t **ctx_dynamic, he_context_t **ctx_iv_dynamic) { uint8_t key[16]; pearson_hash_128(key, key_dynamic, N2N_AUTH_CHALLENGE_SIZE); // for REGISTER_SUPER, REGISTER_SUPER_ACK, REGISTER_SUPER_NAK only // for all other packets, same as static by default (changed by user/pw auth scheme) speck_init((speck_context_t**)ctx_dynamic, key, 128); // hash again and use as key for IV encryption // REMOVE as soon as checksum and replay protection get their own fields pearson_hash_128(key, key, sizeof(key)); speck_init((speck_context_t**)ctx_iv_dynamic, key, 128); }